NBlog

由一条咸鱼搭建的博客

证明一些导数结论

By NriotHrreion2024-02-15

exe^x的导数

f(x)=exf(x)=e^x

则有

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

=limΔx0ex+ΔxexΔx=\lim_{\Delta x \to 0} \frac{e^{x+\Delta x}-e^x}{\Delta x}

=limΔx0ex(eΔx1)Δx=\lim_{\Delta x \to 0} \frac{e^x(e^{\Delta x}-1)}{\Delta x}

=exlimΔx0eΔx1Δx=e^x \lim_{\Delta x \to 0} \frac{e^{\Delta x}-1}{\Delta x}

此时,设t=eΔx1t=e^{\Delta x}-1,则Δx=ln(t+1)\Delta x=\ln(t+1)

Δx0\Delta x \to 0时,t0t \to 0

那么,原式可化为

exlimt0tln(t+1)e^x \lim_{t \to 0} \frac{t}{\ln(t+1)}

=exlimt011tln(t+1)=e^x \lim_{t \to 0} \frac{1}{\frac{1}{t} \ln(t+1)}

=exlimt01ln(t+1)1t=e^x \lim_{t \to 0} \frac{1}{\ln(t+1)^{\frac{1}{t}}}

因为

e=limt0(t+1)1te=\lim_{t \to 0} (t+1)^{\frac{1}{t}}

所以,原式可化为

ex1lnee^x \frac{1}{\ln{e}}

=ex=e^x

f(x)=exf'(x)=e^x

lnx\ln{x}的导数

f(x)=lnxf(x)=\ln{x}

则有

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

=limΔx0ln(x+Δx)lnxΔx=\lim_{\Delta x \to 0} \frac{\ln(x+\Delta x)-\ln{x}}{\Delta x}

=limΔx0lnx+ΔxxΔx=\lim_{\Delta x \to 0} \frac{\ln{\frac{x+\Delta x}{x}}}{\Delta x}

=limΔx0ln(1+Δxx)Δx=\lim_{\Delta x \to 0} \frac{\ln(1+\frac{\Delta x}{x})}{\Delta x}

此时,设t=Δxxt=\frac{\Delta x}{x},则Δx=xt\Delta x=xt

Δx0\Delta x \to 0时,t0t \to 0

那么,原式可化为

limΔx0ln(1+t)xt\lim_{\Delta x \to 0} \frac{\ln(1+t)}{xt}

=1xlimt0ln(1+t)t=\frac{1}{x} \lim_{t \to 0} \frac{\ln(1+t)}{t}

=1xlimt0ln(1+t)1t=\frac{1}{x} \lim_{t \to 0} \ln(1+t)^{\frac{1}{t}}

因为

e=limt0(t+1)1te=\lim_{t \to 0} (t+1)^{\frac{1}{t}}

所以,原式可化为

1xlne\frac{1}{x} \ln{e}

=1x=\frac{1}{x}

f(x)=1xf'(x)=\frac{1}{x}

logax\log_{a}{x}的导数 (a>0a>0)

f(x)=logax,a(0,+)f(x)=\log_{a}{x}, a \in (0,+\infty)

则有

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

=limΔx0loga(x+Δx)logaxΔx=\lim_{\Delta x \to 0} \frac{\log_{a}(x+\Delta x)-\log_{a}{x}}{\Delta x}

=limΔx0ln(x+Δx)lnxΔxlna=\lim_{\Delta x \to 0} \frac{\ln(x+\Delta x)-\ln{x}}{\Delta x\ln{a}}

=limΔx0lnx+ΔxxΔxlna=\lim_{\Delta x \to 0} \frac{\ln\frac{x+\Delta x}{x}}{\Delta x\ln{a}}

=limΔx0ln(1+Δxx)Δxlna=\lim_{\Delta x \to 0} \frac{\ln(1+\frac{\Delta x}{x})}{\Delta x\ln{a}}

lnx\ln{x}导数推导过程同理,可得

f(x)=1xlnaf'(x)=\frac{1}{x\ln{a}}

iia=ea=e时,可得lnx\ln{x}的导数

1x\frac{1}{x}

iiiia=10a=10时,可得lgx\lg{x}的导数

1xln10\frac{1}{x\ln{10}}

sinx\sin{x}的导数

f(x)=sinxf(x)=\sin{x}

则有

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

=limΔx0sin(x+Δx)sinxΔx=\lim_{\Delta x \to 0} \frac{\sin(x+\Delta x)-\sin{x}}{\Delta x}

=limΔx0sinxcosΔx+cosxsinΔxsinxΔx=\lim_{\Delta x \to 0} \frac{\sin{x}\cos{\Delta x}+\cos{x}\sin{\Delta x}-\sin{x}}{\Delta x}

由于当Δx0\Delta x \to 0时,cosΔx1\cos{\Delta x} \to 1

故可将原式化为

limΔx0cosxsinΔxΔx\lim_{\Delta x \to 0} \frac{\cos{x}\sin{\Delta x}}{\Delta x}

又因为当Δx0\Delta x \to 0时,有

sinΔxΔx\sin{\Delta x} \approx \Delta x

所以,原式可化为

limΔx0cosxΔxΔx\lim_{\Delta x \to 0} \frac{\cos{x} \Delta x}{\Delta x}

=cosx=\cos{x}

f(x)=cosxf'(x)=\cos{x}

cosx\cos{x}的导数

f(x)=cosxf(x)=\cos{x}

则有

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

=limΔx0cos(x+Δx)cosxΔx=\lim_{\Delta x \to 0} \frac{\cos(x+\Delta x)-\cos{x}}{\Delta x}

=limΔx0cosxcosΔxsinxsinΔxcosxΔx=\lim_{\Delta x \to 0} \frac{\cos{x}\cos{\Delta x}-\sin{x}\sin{\Delta x}-\cos{x}}{\Delta x}

由于当Δx0\Delta x \to 0时,cosΔx1\cos{\Delta x} \to 1

故可将原式化为

limΔx0sinxsinΔxΔx\lim_{\Delta x \to 0} \frac{-\sin{x}\sin{\Delta x}}{\Delta x}

又因为当Δx0\Delta x \to 0时,有

sinΔxΔx\sin{\Delta x} \approx \Delta x

所以,原式可化为

limΔx0sinxΔxΔx\lim_{\Delta x \to 0} \frac{-\sin{x}\Delta x}{\Delta x}

=sinx=-\sin{x}

f(x)=sinxf'(x)=-\sin{x}

tanx\tan{x}的导数

f(x)=tanxf(x)=\tan{x}

则有

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

=limΔx0tan(x+Δx)tanxΔx=\lim_{\Delta x \to 0} \frac{\tan(x+\Delta x)-\tan{x}}{\Delta x}

=limΔx0sin(x+Δx)cos(x+Δx)sinxcosxΔx=\lim_{\Delta x \to 0} \frac{\frac{\sin(x+\Delta x)}{\cos(x+\Delta x)}-\frac{\sin{x}}{\cos{x}}}{\Delta x}

=limΔx0sin(x+Δx)cosxcos(x+Δx)sinxΔxcos(x+Δx)cosx=\lim_{\Delta x \to 0} \frac{\sin(x+\Delta x)\cos{x}-\cos(x+\Delta x)\sin{x}}{\Delta x\cos(x+\Delta x)\cos{x}}

=1cosxlimΔx0sin(x+Δxx)Δxcos(x+Δx)=\frac{1}{\cos{x}} \lim_{\Delta x \to 0} \frac{\sin(x+\Delta x-x)}{\Delta x\cos(x+\Delta x)}

=1cosxlimΔx0sinΔxΔxcos(x+Δx)=\frac{1}{\cos{x}} \lim_{\Delta x \to 0} \frac{\sin{\Delta x}}{\Delta x\cos(x+\Delta x)}

因为当Δx0\Delta x \to 0时,有

sinΔxΔx\sin{\Delta x} \approx \Delta x

所以,原式可化为

=1cosxlimΔx01cos(x+Δx)=\frac{1}{\cos{x}} \lim_{\Delta x \to 0} \frac{1}{\cos(x+\Delta x)}

=1cos2x=\frac{1}{\cos^2{x}}

f(x)=1cos2xf'(x)=\frac{1}{\cos^2{x}}

两函数相乘求导公式

h(x)=f(x)g(x)h(x)=f(x)g(x)

则有

h(x)=limΔx0h(x+Δx)h(x)Δxh'(x)=\lim_{\Delta x \to 0} \frac{h(x+\Delta x)-h(x)}{\Delta x}

=limΔx0f(x+Δx)g(x+Δx)f(x)g(x)Δx=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x}

=limΔx0(f(x+Δx)f(x)+f(x)Δxg(x+Δx)g(x)Δxf(x))=\lim_{\Delta x \to 0} (\frac{f(x+\Delta x)-f(x)+f(x)}{\Delta x}g(x+\Delta x)-\frac{g(x)}{\Delta x}f(x))

=limΔx0((f(x)Δx+f(x))g(x+Δx)g(x)Δxf(x))=\lim_{\Delta x \to 0} ((\frac{f(x)}{\Delta x}+f'(x))g(x+\Delta x)-\frac{g(x)}{\Delta x}f(x))

=limΔx0(g(x+Δx)Δxf(x)+f(x)g(x+Δx)g(x)Δxf(x))=\lim_{\Delta x \to 0} (\frac{g(x+\Delta x)}{\Delta x}f(x)+f'(x)g(x+\Delta x)-\frac{g(x)}{\Delta x}f(x))

=limΔx0(f(x)g(x)+f(x)g(x+Δx))=\lim_{\Delta x \to 0} (f(x)g'(x)+f'(x)g(x+\Delta x))

=f(x)g(x)+f(x)g(x)=f(x)g'(x)+f'(x)g(x)